·
Now remember we are only
talking of finance reports and that too for a quarter. What if analysing the
last 5 years of data would truly add value to the analysis. Suddenly we are
talking of 700 million to a few billion records. What if we are talking of Cost
& Profitability analysis where we not only need to look at a few billion records
but also conduct calculations on these for cost and profit analysis? We are
still talking only financial data within our enterprise walls.
·
The world and global
competitiveness is changing fast. While we are talking of a few to tens of
billions of records and the ability to handle that our BI infrastructure at
this time starts to groan and creak with a 100 million records.
·
So we are faced with a
decision dilemma. On one side we have the need to make globally comprehensive
decisions to make our company more competitive. On the other hand the data
volumes for such analysis tend to be rather large. Add to this that competition
is also starting to mine social network data to analyse emotional scores on
products and services of the company, including industry specific data that is
now available from large subscription datasets. So from tens of terabytes we
suddenly find ourselves entering data caverns in the thousands of terabytes, or
Exabyte’s.
If we look at a scientific methodology to all this madness then here is
an actionable roadmap with steps for advancement:
·
Step 1: Ensure you have a
documented and communicated foundation of a global methodology in the form of a
‘Global BI Cookbook’ before you do anything else. Proceeding without this is
another waste of time. Check 1: If you naming standards are ‘Z’ and ‘Y’ you
have sub-optimal standards and these need to be changed.
·
Step 2: Clean up your
current BI / W environment. Close to 90% of DW’s have redundant objects. Close
to 80% of DW environments are architectured and modelled sub-optimally. First
step is to clean all this unnecessary baggage in your existing DW/BI
Environment.
·
Step 3: Benchmark your BI
environments and selectively push objects into optimal environments. i.e. Never
put all your cubes into BWA but select the ones that should be there.
·
Step 4: Conduct an
alternatives analysis for each step. i.e. don’t replicate your Cognos reports
on a new BOBJ 4.x deployment. Don’t demand only WebI reports because you think
they are great. Don’t think BWA or HANA will solve all your problems review
Hadoop for social network data reduction.
·
Step 5: When thinking HANA
think BWA and you are closer to the truth than you realize
Modern systems create unbelievable amounts of data. Modern companies planning to track their company with a 360° will have to deal with extremely large volumes of data.
Let’s talk internal data. General ledger data can run anywhere from 40 to 500 million records. For large companies it can run deeper. Costing and Profitability analytics on these systems runs into many billions of records. Smart Meters are producing millions of records every ten or 15 seconds, so analysing a quarter of trends means billions of records. Retail outlets can create millions of records an hour. Airplane engine manufacturers want to conduct in-flight analytics so spares are on site even before the planes have landed this creates billions of records every hour. Homeland security needs to watch millions of passengers traveling inwards and outwards from their country this is billions of records every hour.
In almost all the above cases the speed of information is critical to goals. The general trend has been to either filter the data or view very small subsets of data because the technology was just not there to analyse very large volumes. Now the technology has finally arrived where we can analyse 40 billion or 200 billion records in less than 10 seconds. Such performance changes the competitive advantage of individuals, companies and nations. This speed enables ‘Trade promotions’ to be analysed on a daily basis, cost and profitability to be visualized as events happen, status of all the engines at this point of time across the planet, or a visual view of threat to our homeland at a second to second accuracy.
The digital economy has been here and now we can harness its power.
Lead this revolution with the following roadmap
·
Most critical: Build global methodologies and standards for harmonized
data management
·
Collect
and harness internal data for analysis
·
Then move to collecting many types of structured and unstructured data
from outside the organization
·
Measure competitive advantage like emotional analysis of new product
launch or behaviour predictability
·
Use this knowledge create proactive marketing targeted to synchronize
with global emotions
No comments:
Post a Comment